85 Н.А. Плате 85 лет ИНХС РАН
Десятилетие науки и технологий Международная выставка-форум «Россия»

 

Мы в социальных сетях:

 

telegram    OK    VK

 


Главная

ОСИПОВ МИХАИЛ АЛЕКСЕЕВИЧ
ОСИПОВ МИХАИЛ АЛЕКСЕЕВИЧ

Биография

М.А.Осипов в 1979 г окончил Физический факультет МГУ, и там же в 1983 г. защитил кандидатскую диссертацию. В период 1983-2000 гг. работал в теоретическом отделе Института кристаллографии РАН и в 1991 г. защитил докторскую диссертацию по теории конденсированного состояния. Начиная с 2000 г. М.А.Осипов работает профессором прикладной математики в Университете Стречклайд в Великобритании, где в 2000-2009 гг. был руководителем группы механики сплошных сред, которую до него возглавлял всемирно известный специалист в области математической теории жидких кристаллов профессор Ф. Лесли.

С 2015 г. М.А. Осипов работает также главным научным сотрудником Института нефтехимического синтеза им. Топчиева РАН.

М.А.Осипов является одним из ведущих специалистов в мире в области молекулярной теории жидких кристаллов и родственных им материалов. Им опубликовано более 150 научных статей и 8 обзоров. М.А.Осипов внес существенный вклад в теорию сегнетолектрических жидких кристаллов (ЖК), молекулярную теорию фазовых переходов в ЖК, теорию упругости, вязкости, флексоэлектрических, диэлектрических и поверхностных свойств ЖК, теорию холестерического упорядочения в низкомолекулярных ЖК и жидкокристаллических полимерах, а в последние годы также в молекулярную теорию жидкокристаллических и полимерных нанокомпозитов.

М.А.Осипов является активным членом Международного жидкокристаллического сообщества. В период 2006-2011 гг. был членом редколлегии мехжународного журнала “Liquid Crystals”, а в 2010 г. был избран членом Наградной комиссии этого сообщества, где работает и в настоящее время. На разных этапах М.А.Осипов был членом Международных оргкомитетов и Программных комитетов международных и европейских конференций по ЖК, а также Международных конференций по сегнетолектрическим ЖК. С 2018 г. он является членом комиссии Фонда Ньютона в Великобритании. М.А.Осипов регулярно выступает с приглашенными докладами и лекциями на Международных конференциях и школах. В 2008 г. он был приглашенным Меркатор-профессором в университете Штутгарта при финансовой поддержке Немецкого научного фонда (DFG), который номинировал его на эту должность. М.А.Осипов также был приглашенным профессором в Техническом университете Чалмерса (Швеция, 1998 г.) и Университете Монпелье II (Франция, 2007 г.). В период с 1991-1999 гг. он был стипендиатом Фонда Гумбольдта и Научного фонда Японии, а также работал в Токийском технологическом институте и в университетах Саутгемптона, Эксетера и Лиссабона в качестве приглашенного исследователя. М.А.Осипов был одним из организаторов шестимесячной научной школы «Математика жидких кристаллов», проведенной в Институте Ньютона в Кембридже в 2103 г. В 2015 г. М.А.Осипов был удостоен медали Британского жидкокристаллического общества за выдающиеся успехи в молекулярной теории ЖК.

За время работы в университете Стречклайд М.А.Осипов был руководителем нескольких проектов, поддержанных Фондом науки Великобритании (EPSRC), включая проект, составляющий часть большого международного проекта в рамках сети “Materials World network” , который совместно финансировался фондами США, Германии, Великобритании, Канады и Швеции (2010-2013 гг.). В период 2009-2013 гг. М.А.Осипов также руководил тремя проектами Министерства образования и науки РФ, координируя работу экспериментальной группы в Институте нефтехимического синтеза РАН. В настоящее время М.А.Осипов является руководителем проекта Российского научного фонда «Влияние анизотропии на фазовую структуру и свойства композитов на основе аморфных и жидкокристаллических блок-сополимеров и наночастиц».

Статьи

  1. Ordering of anisotropic nanoparticles in diblock copolymer lamellae: Simula tions with dissipative particle dynamics and a molecular theory. A.V. Berezkin, Y.V. Kudryavtsev, M.V. Gorkunov, and M.A. Osipov, J. Chem. Phys., 146, 144902 (2017).
  2. Induced orientational order of anisotropic nanoparticles in the lamellae phase of diblock copolymers. M. A. Osipov, M. V. Gorkunov and Y. V. Kudryavtsev. Molecular Crystals and Liquid Crystals, 647, 405 (2017).
  3. Effect of polar intermolecular interactions on the elastic constants of bent-core nematics and the origin of the twist-bend phase. Osipov M.A., Pajak G. European Physical Journal E, 39, 45 (2016).
  4. Short-range smectic fluctuations and the flexoelectric model of modulated ne-matic liquid crystals. Vaupotic N., Curk S., Osipov M.A., Cepic M., Takezoe H. and Gorecka E. Physical Review E. 93, 022704 (2016).
  5. Nematic liquid crystals doped with nanoparticles: phase behavior and dielectric properties. Osipov M.A. and Gorkounov M.V. Liquid Crystals with Nano and Microparticles. Lagerwall, J. P. F. and Scalia, G. (eds.). Singapore: World Scientific Publishing Company, 41 p, 2016. (Series in Soft Condensed Matter; vol. 7).
  6. Orientational distribution functions and order parameters in ”de Vries”-type smectics: a simulation study. Jenz F., Osipov M. A., Jagiella S. and Giesselmann F. Journal of Chemical Physics, 145, 134901 (2016).
  7. Spatial distribution and nematic ordering of anisotropic nanoparticles in lamellae and hexagonal phases of block copolymers. M.A. Osipov and M.V. Gorkunov, Eur. Phys. J. E, 2016; 39, 126-134 (2016).
  8. Effect of nanoparticle chain formation on dielectric anisotropy of nematic composites. Osipov M.A. Gorkunov M.V. Physical Review E. 92, 032501 (2015).
  9. Smectic layer instabilities in liquid crystals. Dierking I., Mitov M., Osipov M.A. Soft Matter, 11, 819-837 (2015).
  10. Nanomesh aluminum films for LC alignment. Theoretical and experimental modeling Dadivanyan A.K., Belyaev V. V., Chausov D. N., Stepanov A.A., Smirnov A.G., Tsybin A.G. Osipov M.A. Molecular Crystals and Liquid Crystals. 611, 117 (2015).
  11. Molecular theory of proper ferroelectricity in bent-core liquid crystals. Osipov M., Pajak G. European Physical Journal E-Soft Matter. 37, 79 (2014).
  12. Molecular theory of phase separation in nematic liquid crystals doped with spherical nanoparticles. Osipov M., Gorkounov M. ChemPhysChem. 15, 1496 (2014).
  13. Sign inversion of the spontaneous polarization in a "de vries"-type ferroelectric liquid crystal. Nonnenmacher D., Lemieux R., Osipov M., Giesselmann F. ChemPhysChem.15, 1368 (2014).
  14. Flexoelectricity in chiral nematic liquid crystals as a driving mechanism for the twist-bend and splay-bend modulated phases. Vaupotic N., Cepic M., Osipov M., Gorecka E. Phys. Rev. E, 89, 030501(R) (2014).
  15. Molecular theories of liquid crystals. Osipov M. Handbook of Liquid Crystals: Vol.1. Fundamentals of Liquid Crystals. Goodby, J.W., Collins, P.J., Kato T., Tschierske C., Gleeson H. F , Raynes P. (eds.). Weinheim, Germany: Wiley-VCH Verlag GmbH Co. KGaA, Vol. 1, p. 115-168, (2014).
  16. Phase separation effects and the nematicisotropic transition in polymer and low molecular weight liquid crystals doped with nanoparticles. M.V.Gorkunov, G.A.Shandryuk, A.M Shatalova, I.Yu. Kutergina, A.S.Merekalov, Y.V. Kudryavtsev, R.V.Talrozeb and M. A. Osipovc.Soft Matter, 9, 3578 (2013).
  17. Molecular theory of the tilting transition in smectic liquid crystals with weak layer contraction and diffused cone orientational distribution. M.Osipov and G.Pajak. Phys. Rev. E, 85, 121701 (2012).
  18. Influence of dipole-dipole correlations on the stability of the biaxial nematic phase in the model bent-core liquid crystal M.Osipov and G.Pajak. J.Phys., Cond. Matter, (Fast Track), 24, 14 (2012).
  19. Orientational order parameters of a de Vries-type ferroelectric liquid crystal obtained by polarized Raman spectroscopy and x-ray diffraction. A.Sanchez-Castillo, M.A.Osipov, S.Jagiella, Z.H.Nguyen, M.Kapar, V. Hamplov, J.Maclennan, and F.Giesselmann. Phys. Rev. E, 85, 061703 (2012).
  20. Molecular theory of flexoelectricity in nematic liquid crystals. M.A.Osipov in Flexoelectricity in liquid crystals. Theory, Experiment and Applications, ed. by Agnes Buka and Nandor Eber, Emperial College Press, 2012.
  21. Field-induced transitions between antiferroelectric and ferrielectric phases. Gleeson H.F., Jaradat S., Labeeb A. and Osipov M. Ferroelectrics, 431, 40 (2012).
  22. Order parameter dependence of the viscosity coefficients of a biaxial nematic liquid crystal. M.Osipov and A.Sonnet. Eur. Phys. J. E, 34, 109 (2011).
  23. Molecular theory of smectic ordering in liquid crystals with nanoscale segregation of different molecular fragments. M.V. Gorkunov, M.A. Osipov, N. Kapernaum, D. Nonnenmacher, and F. Giesselmann. Phys. Rev. E, 84, 051704 (2011).
  24. Mean-field theory of a nematic liquid crystal doped with anisotropic nanoparti-сles. Gorkunov M.V and Osipov M.A. Soft Matter, 7, 4348 (2011).
  25. A field-induced ferrielectric liquid crystal phase. Jaradat S., Brimicombe P. D., Osipov M., Pindak R. and Gleeson H. F. Applied Phys. Lett., 98, 043501 (2011).
  26. On the measurement of the orientational order parameters in biaxial liquid crystals using the polarised infrared technique. M.V.Gorkunov and M.A.Osipov. Liquid Crystals, 37, 1569 (2011).
  27. Ferroelectricity in low-symmetry biaxial nematic liquid crystals. M.A.Osipov and M.V.Gorkunov. Cond.Matter, 22, 36 (2011).
  28. Electrolyte effects on the chiral induction and on its temperature dependence in a chiral nematic lyotropic liquid crystal. Dawin, Ute C., Osipov, Mikhail A. and Giesselmann, F. J. of Phys. Chem. B, 114 (32). 10327-10336 (2010).
  29. Ferroelectricity in low-symmetry biaxial nematic liquid crystals. Gorkunov M.V. and Osipov M.A. J. of Phys.: Condensed Matter, 22 (36). 031703. (2010).
  30. Molecular model of biaxial ordering in nematic liquid crystals composed of flat molecules with four mesogenic groups. Gorkunov M.V.,Osipov M.A, Kocot, A. and Vij J.K. Phy. Rev. E , 81 (6) (2010)
  31. Unconventional ferroelectric behavior in nanosegregating liquid crystals with de Vries-like behavior. Nonnenmacher D. Osipov M.A. Roberts J.C., Lemieux, R.C. and Giesseimann, F. Phys. Rev. E, 83 (3). 031703 (2010).
  32. Correlation between the molecular chirality index and the spontaneous polarization in series of smectic C* liquid crystals. S.Becke, S.Haller, M.A.Osipov, F.Giesselmann, Mol.Phys.108, 573 - 582 (2010).
  33. Orientational order parameters in liquid crystals: A comparative study of x-ray diffraction and polarized Raman spectroscopy results. Alberto Sanchez-Castillo, Mikhail Osipov, and Frank Giesselmann. Phys. Rev. E 81, 021707 (2010).
  34. Structure studies of the nematic phase formed by bent-core molecules. N. Vaupotic, J. Szydlowska, M. Salamonczyk, A. Kovarova, J. Svoboda, M. Osipov, D. Pociecha, and E. Gorecka, Phys. Rev. E 80, 030701 (2009).
  35. Stabilization of the smectic C*a phase in mixtures with chiral dopants. Hak Sun Chang, Shaden Jaradat, Helen F. Gleeson, Ingo Dierking, and Mikhail A. Osipov, Phys. Rev. E 79, 061706 (2009).
  36. Microscopic origin of ferroelectricity in chiral smectic C* liquid crystals and ordering of ’ferroelectric fishes’ proposed by de Gennes. M. A. Osipov and M. V. Gorkunov, Liquid Crystals 36, 1281 (2009).
  37. Landau model for polymer-stabilized ferroelectric liquid crystals: Experiment and theory Paul Archer, Ingo Dierking, and Mikhail Osipov Phys. Rev. E 78, 051703 (2008).
  38. Ferroelectric ordering in chiral smectic-C* liquid crystals determined by nonchiral inter-molecular interactions. M. A. Osipov and M. V. Gorkunov. Phys. Rev. E 77, 031701 (2008).
  39. Unexpected field-induced phase transitions between ferrielectric and antiferro-electric liquid crystal structures. S. Jaradat, P. D. Brimicombe, C. Southern, S. D. Siemianowski, E. DiMasi, M. Osipov, R. Pindak, and H. F. Gleeson. Phys. Rev. E 77, 010701 (2008).
  40. Molecular models for the smectic A-smectic C phase transition in a system of biaxial molecules. Maxim V Gorkunov and Mikhail A.Osipov, it J. Phys. A: Math. Theor. 41 295001 (2008).
  41. Molecular theory of layer contraction in smectivc liquid crystals. M.V.Gorkunov and M.A.Osipov, J. Phys.: Condens. Matter 20 (2008) 465101.
  42. Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap Y. Yang, P. D. Brimicombe, N. W. Roberts, M. R. Dickinson, M. Osipov, and H. F. Gleeson. Optics Express, Vol. 16, pp. 6877-6882 (2008).
  43. Molecular models for ferroelectric liquid crystals with conventional and anomalously weak layer contraction M. A. Osipov, M. V. Gorkunov, H. F. Gleeson and S. Jaradat, Eur. Phys. J. E 26, 395-404 (2008).
  44. Tunability of wiregrid metamaterial immersed into nematic liquid crystal M.V.Gorkunov and M.A.Osipov, J. Appl. Phys. 103, 036101 (2008).
  45. Molecular model for de Vries type smectic-A–smectic-C phase transition in liquid crystals M.V.Gorkunov,J.P.F.Lagerwall, F.Giesselmann, T.J.Sluckin and M.A.Osipov, Phys. Rev. E, Rapid. Commun, 75, 060701 (2007).
  46. Order-disorder molecular model of the smectic A-smectic C phase transition in conventional and de Vriestype liquid crystals, M.V.Gorkunov, M.A.Osipov, J.P.F.Lagerwall and F.Giesselmann, Phys.Rev. E, 76, 051706 (2007).
  47. Flexoelectric instability and a spontaneous chiral-symmetry breaking in a nematic liquid crystal cell with asymmetric boundary conditions, S. P. Palto, N. J. Mottram, and M. A. Osipov. Phys. Rev. E, 75, 061707 (2007).
  48. Titl-induced ferromagnetic ordering in anisotropic molecular monolayers. M.A.Osipov, J.L.Gallani and D.Guillon, Eur.Phys.J. E 19, 213 -221 (2006).
  49. Simple model for biaxial smectic A liquid crystal phases. P.I.C.Teixeira, M.A.Osipov and G.Luckhurst, Phys.Rev.E., 73, 061708 (2006).
  50. The intrinsic photorefractive effect in the smectic C* phase of a chiral azoben-zene. A.Saipa, M.A.Osipov, K.W.Lanham, C.H.Chang, D.W.Walba and F.Giesselmann, J.Mater. Chem. 16, 4170-4177 (2006).
  51. Model-independent structure and resonant X-ray spectra of intermediate smectic phases. M.A.Osipov and M.V.Gorkunov, Liquid Crystals, 33, 1133-1141 (2006).
  52. On the change in helix handedness at transitions between the SmC* and SMC*a phases in chiral smectic liquid crystals. J.P.F.Lagerwall, F.Giesselmann and M.A.Osipov, Liquid Crystals, 33, 625-633 (2006).
  53. Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers. V. A. Belyakov, I. W. Stewart and M. A. Osipov. Physical Review E, 71, 051708 (2005).
  54. Induced and spontaneous deracemization in bent-core liquid crystal phases and in other phases doped with bent-core molecules. D.J.Earl, M.A.Osipov, H.Takezoe, Y.Takanishi and M.R.Wilson, Physical Review E, 71, 021706 (2005).
  55. Reflection of light at structured chiral interfaces. D.Bedeaux, M.A.Osipov and J.Vlieger, J.Opt.Soc.America A, 21, 2431-2441 (2004).
  56. Origin of spontaneous polarisation, tilt, and chiral structure of smectic-liquid-crystal phases composed of bent-core molecules. A molecular model. A.V. Emelyanenko and M.A.Osipov, Phys.Rev. E 70, 021704 1-8 (2004).
  57. Theoretical studies of the structure of intermediate chiral smectic phases with increasing periodicity. A. V.Emelyanenko and M. A. Osipov. Ferroelectrics, 309, 13-25 (2004).
  58. Dynamics of pitch jumps in planar cholesteric layers with finite anchoring V. A. Belyakov, I. W. Stewart and M. A. Osipov. JETP, 99, 73-82 (2004).
  59. Helical twisting power and chirality indices H.Kamberaj, M.A.Osipov, R. J. Low and M.P. Neal Mol. Phys., 102, 431-446 (2004).
  60. On the temperature dependence of the tilt and spontaneous poalrisation in high tilt antiferroelectric liquid crystals. H. F. Gleeson, Y. Wang, S. Watson, D. Sahagun-Sanchez, J. W. Goodby, M. Hird, A. Petrenko and M. A. Osipov, J.Mater.Chem., 14, 1480-1485 (2004).
  61. Theoretical model for the discrete flexoelectric effect and a description for the sequence of intermediate smectic phases with increasing periodicity A. V. Emelyanenko and M. A. Osipov. Phys. Rev. E, 68, 051703 (2003).
  62. Orientational ordering and chiral symmetry breaking in organic monolayers composed of disklike mesogenic molecules: Molecular theory and computer simulations. M. A. Osipov and J. Stelzer it Phys. Rev. E, 67, 061707 (2003).
  63. Theory of nematic-smectic phase separation in thin twisted liquid crystal cells. M. A. Osipov, J. R. Sambles and L. Ruan Liq. Cryst., 30, 823-830 (2003).
  64. Synclinic and anticlinic ordering in frustrated smectics M.A. Osipov, A. Fukuda and H. Hakoi Mil. Cryst. Liq. Cryst., 402, 9/[245] (2003).
  65. Fluctuation forces stabilising two kinds of staircases in chiral tilted fluid smectcs frustrated between ferro- and antiferroelectricity. A. Fukuda, H. Hakoi, M. Sato and M.A.Osipov. Mol. Cryst. Liq. Cryst., 398, 169 (2003).
  66. Competitive effects of grooves and photoalignment on nematic liquid crystal alignment using azobenzene polymer Duo-Han Chang, T.Fukuda, Y. Takanishi,K.Ishikawa, H. Matsuda, H.Takezoe and M. A. Osipov. J. Appl. Phys., 92, 1841 (2002).
  67. Coexisting nematic and smectic A phases in a twisted liquid crystal cell. L. Z. Ruan, M. A. Osipov and J. R. Sambles Phys. Rev. Lett., 86, 4548 (2001).
  68. Helical twisting power and circular dichroism in nematic liquid crystals M. A. Osipov and H.-G. Kuball Eur. Phys. J. E, 589 (2001).
  69. Synclinic-abticlinic phase transition in tilted organosiloxane liquid crystals D. Guillon, M.A. Osipov, S. Mery, M. Seifert, J. F. Nicoud, C. Bourgogne and P.Sebastio J. Mater. Chem., 11, 2700 (2001).
  70. Layered chiral metallic microstaructures with inductive coupling Yu. Svirko, N. I.Zheludev and M. A. Osipov Appl. Phys. Lett, 78, 498 (2001).
  71. Molecular model for the anticlinic smectic CA phase M. A. Osipov and A. Fukuda Phys. Rev. E, 62, 3724 (2000).
  72. Molecular theory of helical sense inversions in chiral nematic liquid crystals A. V. Emelyanenko, M. A. Osipov and D. A. Dunmur Phys. Rev. E, 62, 2340 (2000).
  73. The effect of polymer network on smectic phase structure as probed by polarisation measurements on a ferroelectric liquid crystal. I. Dierking, M. A. Osipov and S. T. Lagerwall. Europ. Phys. J, 303 (2000).
  74. Nematic-isotropic phase transition in polar liquid crystals. I.Statistical theory. A. V. Emelyanenko and M. A. Osipov Cryst. Reports, 45, 549 (2000).
  75. Nematic-isotropic phase transition in polar liquid crystals. II. Role of the dispersion interactions A. V. Emelyanenko and M. A. Osipov. Cryst. Reports, 45, 558 (2000).
  76. Theoretical model for layer rotation in smectic A* liquid crystals subject to asymmetric electric fields. T. Carlsson and M. A. Osipov. Phys. Rev. E 60, 5619 (1999).
  77. Molecular theory of ferroelectric ordering in enantiomeric mixtures of smectic C* liquid crystals M. A. Osipov and D. Guillon Phys. Rev. E 60, 6855 (1999).
  78. Influence of dimerization on the nematic-isotropic phase transition in strongly polar liquid crystals. A. V. Emelyanenko and M. A. Osipov. Liq. Cryst. 26, 187 (1999).
  79. Relationship between flexoelectricity and helical pitch in ferroelectric liquid crystal mixtures containing host achiral compounds and chiral dopants. Y. Takanishi, J. Yokoyama, K. Ishikawa, H. Takezoe, A. Fukuda, H. Orihara and M. A. Osipov. Jpn. J. Appl. Phys. 38, L 580 (1999).
  80. Molecular model for the simultaneous orientational and translational ordering in a two-dimensional liquid V. M. Kaganer and M. A. Osipov. J. Chem. Phys. 109, 2600 (1998).
  81. Molecular Theories of Liquid Crystals M. A. Osipov in ’Handbook of Liquid Crystals’, Vol.1, 2nd edition, edited by D.Demus, J.Goodby, G.W.Gray, H.-W. Spies and V.Vill, WILEY-VCH, Weinheim,1998.
  82. Chirality measure and chiral order parameter for a two-dimensional system M. A. Osipov, B. T. Pickup, M. Fehervari and D. A. Dunmur Mol. Phys. 94, 283 (1998).
  83. Phase diagram of aligned dipolar hard rods P. I. C. Teixeira, M. A. Osipov and M. M. Telo da Gama Phys. Rev. E 57, 1752 (1998.)
  84. Influence of permanent molecular dipoles on surface anchoring of nematic liquid crystals. M. A. Osipov, T. J. Sluckin and S. J. Cox Phys. Rev. E 55, 464 (1997).
  85. Density-functional approach to the theory of dipolar fluids M. A. Osipov, P. I. C. Teixeira and M. M. Telo da Gama J. Phys. A: Maths. Gen. 30, 1953 (1997).
  86. Criticality of dipolar fluids: Liquid-vapor condensation versus phase separation in systems of living polymers J. M. Tavares, M. M. Telo da Gama and M. Osipov. Phys. Rev. E, Rapid. Commun. 56, R6252 (1997).
  87. Sign inversion of liquid-crystal-induced circular dihroism observed in the smectic-A and chiral smectic Cα phases of binary mixture systems. K. Yamada, Y. Takanishi, K. Ishikawa, H. Takezoe, A. Fukuda and M. A. Osipov Phys. Rev. E, Rapid. Commun. 56, R43 (1997).
  88. Molecular origin of ferroelectricity in induced smectic C* liquid crystalline phases. M. A. Osipov, H. Stegemeyer and A. Sprick Phys. Rev. E 54, 6387 (1996).
  89. Determination of coherence length of a smectic liquid crystal M. Osipov, J. R. Sambles and F. Yang Liq. Cryst. 21, 727 (1996).
  90. Structure of strongly dipolar fluids at low densities. M. A. Osipov, P. I. C. Teixeira and M. M. Telo da Gama Phys. Rev. E 54, 2597 (1996).
  91. Viscosity Coefficients of Smectics C* M. A. Osipov, T. J. Sluckin and E. M. Terentjev Liq. Cryst. 19, 197 (1995).
  92. Dipolar and Quadrupolar Ordering in Ferroelectric Liquid Crystals M. A. Osipov and S. A. Pikin J. Physique II 5, 1223 (1995).
  93. Sign inversion of the spontaneous polarization in induced liquid crystalline smectic C* phases H. Stegemeyer, A. Sprick, M. A. Osipov, V. Vill and H.-W. Tunger Phys. Rev. E 51, 5721 (1995)
  94. A new twist to molecular chirality: intrinsic chirality indices M. A. Osipov, B. T. Pickup and D. Dunmur Mol. Phys., 84, 1193 (1995).
  95. Electric field effect on the nematic-isotropic phase transition E. I. Rjumtsev, M. A. Osipov, T. A. Rotinjan and N. P. Yevlampieva Liq. Cryst. 18, 87 (1995).
  96. Polarizational instability in semiflexible liquid crystalline polymers of directed dipolar chains E. M. Terentjev, M. A. Osipov and T. J. Sluckin. J. Phys. A 27, 7047 (1994).
  97. Molecular Theory of Cholesteric Polymers. M. A. Osipov, in ”Liquid Crystalline and Mesomorphic Polymers”, ed. by L.Lam and V.Shibaev, Springer-Verlag, 1994.
  98. Elastic constants of nematics. Comparison between the molecular theory and computer simulations M. A. Osipov, S. Hess Liq. Cryst. 16, 26 (1994).
  99. Influence of molecular biaxiality on the ferroelectric properties of smectics C* M. A. Osipov, R. Meister, H. Stegemeyer Liq. Cryst. 16, 173 (1994).
  100. Density functional approach to the theory of interfacial properties of nematic liquid crystals M. A. Osipov, S. Hess J. Chem. Phys. 99, 4181 (1993).
  101. A molecular model for tilting phase transitions between condensed phases of Langmuir monolayers V. M. Kaganer, M. A. Osipov and I. R. Peterson J. Chem. Phys., 98, 3512 (1993).
  102. Molecular theory of order electricity M. A. Osipov and T. J. Sluckin J. Physique. II 3, 793 (1993).
  103. The elastic constants of nematic and nematic discotic liquid crystals with perfect local orientational order M. A. Osipov and S. Hess Mol. Phys. 76, 1191 (1993).
  104. Condensation of DNA: a possible role of cationic charges of bound drugs in the inversion of the long range chirality B. Samori, M. A. Osipov, A. Domini and A. Bartolini Int. J. Biol. Macromol. 15, 353 (1993)
  105. Surface ordering and finite-size effects at the first order phase transition SmA - SmC in liquid-crystalline free-standing films I. Kraus, P. Pieransky, E. Demikhov, H. Stegemeyer, J. Goodby, A. Slaney and M. A. Osipov Ber. Bunsenges. Phys. Chem.97, 1376 (1993).
  106. Theory of Ferroelectricity in Liquid Crystals S. A. Pikin and M. A. Osipov in ”Ferroelectric Liquid Crystals. Principles, Properties and Applications”. Ferroelectricity and Related Phenomena. Vol.7, Gordon and Breach Sci. Publ., 1992.
  107. On the value of spontaneous polarization in ferroelectric liquid crystals with different molecular structure M. A. Osipov Molec. Materials 1, 567 (1992).
  108. Study of the Orientational Order in Liquid Crystals by X-Ray Scattering M. A. Osipov, B. I. Ostrovskii Cryst. Rev. 3, 113 (1992).
  109. Surface order transition in nematic liquid crystals G. Barbero, Z. Gabbasova and M. A. Osipov J. Physique. II 1, 691 (1991).
  110. A study of solvent effect on the optical rotation of chiral biaryls. Can a non-orthosubstituted biphenyl became optically active in the presence of a chiral resolved biaryl? G. Gottarelli, M. A. Osipov and G. P. Spada, J. Phys. Chem. 95, 3879 (1991).
  111. Viscosity coefficients of the nematic mixture: Statistical theory approach E. M. Terentjev and M. A. Osipov Z. Naturforsch. 46a, 733 (1991).
  112. Rotational viscosity coefficients of nematic and smectic C liquid crystals: statistical theory M. A. Osipov and E. M. Terentjev Nuovo Cimento, 12 D, 1223 (1990).
  113. Rotational diffusion and rheological properties of liquid crystals M. A. Osipov and E. M. Terentjev Z. Naturforsch. 44a, 785 (1989).
  114. Statistical viscosity theory of nematic liquid crystals M. A. Osipov and E. M. Terentjev Phys. Lett. A 134, 301 (1989).
  115. Structure factor of the nematic liquid crystal with the ideal orientational order M. A. Osipov and B. I. Ostrovsky Sov. Phys. Crystallography 34, 1359 (1989)
  116. Molecular Models for Liquid Crystals M. A. Osipov Izvestia Acad. Nauk. Ser.fiz. (Soviet Phys. Izvestia) 53, 1915 (1989).
  117. Influence of the dipole-dipole interactions on the isotropic-nematic phase transition M. A. Osipov, A. Yu. Simonov Khimich. Fizika 8, 992 (1989).
  118. The Polarization Properties of Liquid Crystals S. A. Pikin, M. A. Osipov and E. M. Terentjev Soviet Scientific Reviews , Harwood Acad. Publ. 11 A, 193 (1989).
  119. Influence of the Van-der-Waals intermolecular interactions on the liquid crystalline ordering in polymer solutions I. A. Nyrkova, M. A. Osipov and A. R. Khokhlov. Sov. Phys. Crystallography 33, 957 (1988).
  120. Theory for the cholesteric ordering in lyotropic liquid crystals M. A. Osipov Nuovo Cimento D 10, 1249 (1988).
  121. Ferroelectric Liquid Crystals L. A. Beresnev, L. M. Blinov, M. A. Osipov, S. A. Pikin Mol. Cryst. Liq. Cryst. Special Topics XXIX 158 A, 1 - 150, (1988).
  122. Free energy of the orientational interaction between a nematic liquid crystal and the solid wall M. A. Osipov Sov. Phys. Interface 9 39 (1988).
  123. Theory of the refractive indices of lyotropic nematics M. A. Osipov and A. G. Petrov Sov. Phys. Interface 50 1130 (1988).
  124. Rotational viscosity of the smectic C phase of ferroelectric liquid crystals E. P. Pozhidaev, M. A. Osipov, V. G. Chigrinov, V. A. Baikalov, L. M. Blinov and L. A. Beresnev Soviet. Phys. JETP. 67, 283 (1988).
  125. Correlation theory of elasticity of cholesteric liquid crystals M. A. Osipov Sov. Phys. Crystallography 33, 817 (1988).
  126. Cholesteric ordering of the synthetic polypeptides in a chiral solvent M. A. Osipov Sov. Phys. Macromolecules 19A, 1603 (1987).
  127. Molecular theory for the cholesteric polymer solutions M. A. Osipov, A. N. Semenov, A. R. Khokhlov Khimich. Fizika 6, 1312 (1987).
  128. Refractive indices and the anisotropy of the local field in many-component liquid crystals M. A. Osipov Soviet. Phys. Crystallography 32, 565 (1987).
  129. Dielectric permittivity and the problem of the local field in liquid crystals M. A. Osipov Soviet. Phys. Crystallography 31, 1051 (1986).
  130. On the statistical theory of the flexoelectric effect in liquid crystals V. B. Nemtsov and M. A. Osipov Soviet. Phys. Crystallography 31, 213 (1986).
  131. Compensated structure of the liquid crystalline microphases of nuclear acids S. G. Skuridin, A. T. Dembo, M. A. Osipov, Ch. Damaschun, G. Damaschun and Yu. M. Evdokimov Soviet Phys. Doklady 285, 1647 (1985).
  132. Statistical theory for the dielectric susceptibility of liquid crystals M. A. Osipov Soviet. Phys. Solid State 27, 1651 (1985).
  133. Statistical theory of the dielectric susceptibility of nematic liquid crystals Yu. L. Klimontovich, M. A. Osipov and A. V. Egybyan Soviet. Phys. Crystallography 30, 445 (1985).
  134. Molecular statistical theory approach to the calculation of the refractive indices of liquid crystals and the Neugebauer theory M. A. Osipov and A. V. Egybyan Soviet Phys. Tech. Phys. 55, 1482 (1985).
  135. Molecular theory of solvent effect on the cholesteric ordering in lyotropic liquid crystals M. A. Osipov Chem. Phys. 96, 259 (1985).
  136. The general statistical theory for the dielectric permittivity and the internal field in anisotropic fluids M. A. Osipov Chem. Phys. Lett. 113, 471 (1985).
  137. The order parameter dependence of the flexoelectric coefficients in nematic liquid crystals M. A. Osipov J. Physique. Lett. 45, 823 (1984).
  138. Molecular theory for the refractive indices of liquid crystals Yu. L. Klimontovich, M. A. Osipov and A. V. Egybyan Sov. Phys. Tech. Phys. 54, 2414 (1984).
  139. Molecular-statistical theory for the ferroelectricity in the smectic C phase M. A. Osipov Ferroelectrics 59, 305 (1984).
  140. Molecular models for the ferroelectric smectic C phase . A. Osipov and S. A. Pikin Mol. Cryst. Liq. Cryst. 103, 57 (1983).
  141. Molecular theory of flexoelectric effect in nematic liquid crystals M. A. Osipov Sov. Phys. JETP 56, 1167 (1983).
  142. Molecular theory for the optical activity of anisotropic fluids M. A. Osipov and A. V. Egybyan Sov. Phys. Chem. Phys. 3, 325 (1983).
  143. Flexoelectric effect and the helical twisting in the smectic C liquid crystals M. A. Osipov and S. A. Pikin Sov. Phys. JETP 55, 458 (1982).
  144. On the microscopic origin of the flexoelectric effect in the smectic C liquid crystals M. A. Osipov and S. A. Pikin Sov. Phys. JETP 53, 1245 (1981).
  145. Asymmetry of the molecular shape and ferroelectric ordering in liquid crystals M. A. Osipov and S. A. Pikin Sov. Phys. Techn. Phys. 52, 158 (1982).
  146. On the microscopic origin of the flexoelectric effect in the smectic C liquid crystals V. L. Indenbom, E. B. Loginov and M. A. Osipov Sov. Phys. Crystallography 26, 1201 (1981).
  147. Molecular model for the ferroelectric state in smectic C liquid crystal M. A. Osipov and S. A. Pikin Sov. Phys. Crystallography 26, 263 (1981).
  148. On the violation of the minimum principle for the free energy of some model ferroelectrics in the self-consistent field approximation M. A. Osipov and A. S. Shumovsky Sov. Phys. Theor. Phys. 46, 125 (1981).
  149. External field induced phase transitions in ferroelectrics with two sublattices M.A.Osipov Soviet Phys. Solid State 21, 1518 (1979).
  150. External field effect on the phase transitions in Rochelle salt type ferroelectrics M.A.Osipov Soviet Phys. Solid State 20, 2011 (1978).

Ученики

  • Емельяненко А.В. – доктор.физ.-мат.наук
  • Grzegorz Pajak – Ph.D
 
« Пред.   След. »

Новости
10.12.2023
Наука_против_коррупции.jpg

ИНХС РАН принял участие в Международном молодежном конкурсе социальной антикоррупционной рекламы «Вместе против коррупции!»

 
07.12.2023
шму2023.jpg

Информационное сообщение

12 декабря 2023 года Институт нефтехимического синтеза им. А.В. Топчиева РАН (Москва, Россия) проводит VII Школу молодых ученых «Глубокая переработка углеводородного сырья: теоретические и прикладные аспекты».

Школа проводится при финансовой поддержке РНФ (грант №17-73-30046П) «Глубокая переработка углеводородного сырья: фундаментальные исследования как основа перспективных технологий».

Доклады на Школе призваны осветить самые актуальные на момент организации мероприятия вопросы от ведущих ученых.

Добро пожаловать на Школу!

Контакты оргкомитета:
Дементьев Константин Игоревич, 8 (495) 6475927, доб. 219;
e-mail: E-mail защищен от спам-ботов. Для его просмотра включите поддержку Java-script
Калмыкова Дарья Сергеевна, 8 (495) 6475927, доб. 168;
e-mail: E-mail защищен от спам-ботов. Для его просмотра включите поддержку Java-script

Скачать PDF Программа школы

 
16.11.2023

14 ноября 2023 г. в рамках деятельности Технического комитета по стандартизации 31 «Нефтяные топлива и смазочные материалы» состоялось заседание рабочей группы по актуализации ГОСТ 10227 «Топлива для реактивных двигателей. Технические условия», в котором приняли участие заместитель директора А.Б. Куликов и заведующий сектором "Химии нефти" А.С. Лядов.

На заседании рассмотрены подходы в части расширения и повышения показателей качества авиакеросинов, а также вопросы приведения стандарта в соответствие с действующими в РФ и ЕАЭС законодательством, обсуждалась необходимость научных исследований в целях формирования доказательной базы по изменяемым показателям качества топлива для последующего внесения в летную документацию эксплуатантов авиационной техники.

 
10.11.2023
Медаль-Премия-Березкина

ИНХС РАН завершил прием заявок на конкурс работ молодых ученых на присуждение премии имени профессора В.Г. Березкина 2023 г. (http://www.ips.ac.ru/Премия_Берёзкина) за научные достижения в области хроматографических и иных методов разделения и концентрирования веществ (ионов).

Участники основного этапа конкурса:

  1. Андросова (Кравченко) А.В.., Колобова Е.А. «Применение модификаторов на основе катионных имидазолиевых производных β-циклодекстрина в качестве стационарных и псевдостационарных фаз при определении биологически активных соединений методом капиллярного электрофореза» (СПбГУ, Институт химии).
  2. Карпицкий Д.А. «Разработка современных подходов к пробоподготовке для хроматографического профилирования биологически активных веществ в растительных объектах» (СПбГУ).
  3. Матюшин Д.Д., Шолохова А.Ю. «Машинное обучение в газовой хромато-масс-спектрометрии: нецелевой анализ сложных смесей и предсказание индексов удерживания» (ИФХЭ РАН).
  4. Разницына В.М. «Ионные жидкости в анализе биологически активных соединений на неполярных сорбентах методом ОФ ВЭЖХ» (Самарский университет).
  5. Юшкин А.А, Балынин А.В, Небесская А.П. «Разработка мембран для процесса мембранной деасфальтизации нефти и нефтепродуктов» (ИНХС РАН).
 
08.10.2023

Заикин.jpg 07 октября 2023 г. ушел из жизни выдающийся ученый, доктор химических наук, профессор Владимир Георгиевич Заикин

Владимир Георгиевич Заикин родился 12 ноября 1941 г. в г. Мелеуз Башкирской АССР. В 1959 г. он поступил на химический факультет Московского государственного университета имени М.В. Ломоносова, который окончил в 1964 г. В 1962 г., еще будучи студентом, Владимир Георгиевич начал работать в Институте химии природных соединений АН СССР (ныне Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН). Именно тогда он познакомился с только появившимся в нашей стране методом – масс-спектрометрией, которая и стала его делом на всю жизнь.

В институте был всего один масс-спектрометр, поэтому молодым сотрудникам приходилось работать ночами, ведь регистрация даже одного масс-спектра занимала десятки минут. Мировую известность ему принесли первые научные работы, связанные с использованием масс-спектрометрии для установления пространственного строения биологически активных соединений. В 1968 г. он защитил кандидатскую диссертацию на тему «Масс-спектрометрическое исследование в области стереохимии стероидных спиртов и их аналогов».

Небольшой период времени с 1969 по 1972 г. Владимир Георгиевич работал научным сотрудником в Институте геологии и разработки горючих ископаемых, где занимался масс-спектрометрическим изотопным анализом различных каустобиолитов. В 1973 г. он был приглашен на работу в Институт нефтехимического синтеза им. А.В. Топчиева АН СССР для организации масс- и хроматомасс-спектрометрических исследований. За полвека работы в ИНХС РАН Владимир Георгиевич прошел путь от младшего научного сотрудника до заведующего лабораторией спектральных исследований, защитил докторскую диссертацию.

В ИНХС РАН Владимир Георгиевич провел громадное число различных исследований в области масс- и хроматомасс-спектрометрического исследования нефти, угля, промышленных нефтепродуктов и продуктов нефтехимического синтеза. Сотрудники лаборатории не раз вспоминали, что в его кабинет выстраивались целые очереди для обсуждения получаемых результатов. Владимир Георгиевич всегда очень внимательно относился ко всем работам в институте, старался помогать всем, кто обращался к нему за консультациями.

В 80-е годы В.Г. Заикиным совместно с А.И. Микая сформулировал общую методологию комбинированных методов реакционной и пиролитической хроматомасс-спектрометрии, экспериментальная реализация которой позволила распространить область применения метода на различные низколетучие и нелетучие органические и высокомолекулярные молекулы, увеличить его информативность. Предложенные принципы были положены в основу ряда эффективных, экспрессных и экономичных методик определения структуры веществ в смесях, изучения химии и термохимии ионов в газовой фазе, микромониторинга каталитических систем в разнообразных газо-твердофазных реакциях, имеющих важное практическое применение при разработке способов получения альтернативных топлив.

Конец 80-х – начало 90-х годов стали для лаборатории, как и для всего института, тяжелым испытанием. Владимир Георгиевич прикладывал все силы для поддержания научной работы и помощи сотрудникам лаборатории. Благодаря широкой мировой известности его школы в области органической масс-спектрометрии в 1993 г. Национальный институт стандартов и технологии (NIST, США) предложил Владимиру Георгиевичу принять участие в работах по оценке, совершенствованию и расширению масс-спектральной базы данных, формируемой эти институтом. Более двадцати лет он посвятил этим работам, внеся громадный вклад в используемую практически всеми масс-спектрометристами мира базу данных. Владимир Георгиевич оценивал каждый из более четырехсот тысяч масс-спектров, внесенных в эту базу данных, выявляя ошибочные и некачественные данные. Под его руководством была развернута масштабная работа по получению различных производных органических соединений и регистрации их стандартных масс-спектров электронной ионизации. В настоящее время в масс-спектральную базу данных NIST представлено более шестидесяти тысяч масс-спектров, полученных в его лаборатории.

Конец прошлого века стал временем расцвета новых «мягких» масс-спектрометрических методов: ионизации электрораспылением, матрично-активированной лазерной десорбции/ионизации и др. Владимир Георгиевич глубоко переживал отставание российской масс-спектрометрии, связанное с отсутствием доступа к новым приборам, пользовался каждой возможностью для развития методологии применения этих способов анализа у нас в стране. Его наиболее интересные работы опирались на глубокие знания в области методов органического синтеза. Под его руководством были разработаны десятки новых подходов к химической модификации соединений для их детектирования «мягкими» методами ионизации и решения различных структурно-аналитических проблем.

Не меньшее внимание Владимир Георгиевич уделял и работе во Всероссийском масс-спектрометрическом обществе (ВМСО). Являясь одним из его основателей, он активно занимался созданием и развитием журнала «Масс-спектрометрия» – печатного органа ВМСО. Он стал первым и несменяемым за все время существования журнала его главным редактором. Первый номер уникального по проблематике для российской научной периодики журнала вышел в 2004 г., и с тех пор «Масс-спектрометрия» прочно заняла лидирующие позиции среди изданий, занимающихся вопросами теории и практики инструментального сопровождения химических исследований. Как главный редактор этого журнала он тщательно прорабатывал все поступавшие в него материалы, много времени и усилий тратил на общение с рецензентами и авторами, добиваясь наилучшего качества публикуемых статей. Всех, кто имел счастье столкнуться с его авторской и редакторской деятельностью, поражали глубокое знание научной методологии, культуры публикаций, русского языка. Именно по его инициативе ВМСО начало деятельность по формированию русскоязычного терминологического словаря по масс-спектрометрии, которым по сей день пользуются не только масс-спектрометристы, но и другие ученые, сталкивающиеся с этим методом.

В 2007 г. на III съезде ВМСО Владимир Георгиевич был избран президентом ВМСО и проработал в этой должности до 2009 г. В знак признания научных заслуг и большой научно-организационной работы Владимиру Георгиевичу в 2021 г. была вручена главная награда ВМСО – медаль «За выдающиеся заслуги в области масс-спектрометрии».

Своим ученикам Владимир Георгиевич часто говорил, что настоящий ученый не должен быть ремесленником и скрывать секреты своего мастерства. Он был убежден, что фундаментальная наука должна быть общим достоянием. Именно поэтому Владимир Георгиевич постоянно работал над систематизацией знаний в области масс-спектрометрии. Совместно с Дж. Халкетом им была подготовлена и опубликована серия обзорных материалов по применению дериватизации. Эта же серия легла в основу книги о методах химической модификации аналитов. Суммарное цитирование этих материалов превышает тысячу ссылок. Учебник Владимира Георгиевича по масс-спектрометрии органических соединений, подготовленный в соавторстве с А.И. Микая и сотрудниками РУДН, стал настолько востребован, что по многочисленным просьбам пришлось допечатывать новые экземпляры этой книги. Большой популярностью пользуются и другие монографии, и учебные пособия, опубликованные им совместно с коллегами.

Владимир Георгиевич хорошо знал историю той науки, которой посвятил жизнь. В 2018 г. в соавторстве со своим учеником К.В. Третьяковым вышла его монография «История масс-спектрометрии в датах», в которой он проследил развитие масс-спектрометрии, начиная с работ Дж. Дальтона и Уи. Праута по сегодняшний день. Особое внимание в этой монографии уделено работам советских и российских ученых, благодаря Владимиру Георгиевичу труд его коллег не будет забыт.

Много сил Владимир Георгиевич тратил на работу с молодежью. Он внимательно следил за ходом выполнявшихся в лаборатории научных работ студентов и аспирантов, всегда был готов помочь советом по любым вопросам, обсудить любую проблему. Под его руководством защищены 1 докторская и 11 кандидатских диссертаций.

До конца жизни Владимир Георгиевич оставался настоящим русским  интеллигентом. Он хорошо знал искусство, живопись, кинематограф. Его коллекции фильмов расцвета итальянского неореализма могли позавидовать профессиональные кинокритики, а в беседах о классиках модерна в живописи вряд ли можно было найти ему равных.

Владимир Георгиевич пользовался непререкаемым авторитетом и глубоким уважением в масс-спектрометрическом сообществе, у коллег в России и за рубежом, сотрудников ИНХС РАН. Он многое сделал и много достиг, всегда помнил об учениках и коллегах, помогал и заботился о них. Мы его очень любили. Нам будет его не хватать.

От имени масс-спектрометристов России, членов Совета Всероссийского масс-спектрометрического общества, сотрудников ИНХС РАН и всех, кто знал и работал с Владимиром Георгиевичем Заикиным, Роман Сергеевич Борисов, Мария Леонидовна Хрущева

 
16.09.2023

По многочисленным просьбам срок регистрации и подачи тезисов на XIII Международную конференцию молодых ученых по нефтехимии «Современные проблемы газохимии», которая состоится 8–10 ноября 2023 года в г. Москва, Президиум РАН, продлевается до 24 сентября 2023 г. включительно.

После этой даты тезисы приниматься не будут.​

 
11.09.2023

Актуальные каталитические подходы к образованию C–C и C–O связей при создании новых материалов11 октября 2023 года ИНХС РАН проводит Школу молодых ученых "Актуальные каталитические подходы к образованию C–C и C–O связей при создании новых материалов". Школа проводится при финансовой поддержке Российского научного фонда (грант №21-73-30010) "Современные органические материалы: от развития теории катализа к дизайну востребованных продуктов из углеводородного и растительного сырья".

Мероприятия Школы молодых ученых "Актуальные каталитические подходы к образованию C–C и C–O связей при создании новых материалов" призваны осветить актуальные проблемы синтеза полимерных материалов нового поколения, их биоразлагаемости, биосовместимости и переработки. Программа Школы включает в себя лекции ведущих ученых, посвященные каталитическим процессам образования С–С и C–O связей, перспективам полиолефиновой индустрии, химии биоразлагаемых полимеров.

Скачать PDF Научная программа

Скачать PDF Заявка на участие

 
04.09.2023

Гюльмалиев А.М. Дирекция ИНХС РАН с прискорбием извещает, что 02 сентября 2023 г. на 80 году жизни скоропостижно ушел из жизни Гюльмалиев Агаджан Мирза Оглы, доктор химических наук, профессор, главный научный сотрудник ИНХС РАН.

Выражаем искренние соболезнования родным и близким Агаджана Мирза Оглы.

 
01.09.2023

ИНХС РАН при активной поддержке Минобрнауки России и под научно-методическим руководством Российской академии наук в кооперации с ведущими вузами, научными организациями и промышленными компаниями проводят исследования по широкому кругу направлений – от создания крупнотоннажных технологий переработки в области нефте- и газохимии и переработки возобновляемых ресурсов до малотоннажных продуктов. Это специальные присадки, полимеры и полимерные композиционные материалы, включая материалы для микроэлектроники и медицины, мембранные модули для разделения газов и жидкостей, феромоны, катализаторы.

1 сентября 2023 г. делегация в составе заместителя Министра образования и науки Д.С. Секиринского, заместителя директора Департамента координации деятельности научных организаций И.Н. Чугуевой и начальника отдела координации деятельности учреждений в сфере биологических и химических наук А.Ю. Сорокиной посетили ИНХС РАН и ознакомились с возможностями Института по производству высокомаржинальной продукции: от лабораторных установок – к пилотным и опытно-промышленным установкам и научному сопровождению их промышленного внедрения.

Директор ИНХС РАН чл.-корр. РАН А.Л. Максимов рассказал о последних достижениях Института по основным научным направлениям деятельности, превратившихся в современные технологии, внедренные в последние 3 года на производствах нефтепереработки и газохимии, включая новые производственные линии масштабного производства присадок.

"Что касается малотоннажного производства, то мы уже готовы производить некоторые наименования в количестве 5 – 100 кг для разных отраслей. Это сырье для производства лекарств, косметические воски, это и депрессорные присадки к маслам и топливам, специальные полимеры для микроэлектроники, мембранные газоразделительные и фильтрационные модули. Компетенции Института позволяют организовывать производство или научное сопровождение этих процессов при их масштабировании".

Д.С. Секиринский уточнил правовую охрану получаемых результатов и условия их трансфера, отметил важную роль научных организаций в разработке методических подходов и созданию промышленных линий наукоемкой высокомаржинальной продукции.

>>> Подробнее...
 
31.08.2023
Ширяева-ВЕ.jpg

Уважаемые коллеги!

Дирекция и Профком ИНХС РАН с прискорбием извещают, что 29 августа 2023г. после тяжелой продолжительной болезни скончалась Ширяева Валерия Евгеньевна, старейший сотрудник Института, специалист в области хроматографии.

Выражаем искренние соболезнования родным и близким Валерии Евгеньевны.

Информация о дате похорон будет сообщена дополнительно.

 
Сведения для экспертной оценки деятельности ИНХС РАН в 2013- 2015 гг.

Скачать PDF Сведения для экспертной оценки ИНХС РАН по основной референтной группе 16

Скачать PDF Сведения для экспертной оценки ИНХС РАН по дополнительной референтной группе 4

Скачать PDF Сведения для экспертной оценки ИНХС РАН по дополнительной референтной группе 6

Скачать PDF Сведения для экспертной оценки ИНХС РАН по дополнительной референтной группе 8